Order statistics from mixed exchangeable random variables
نویسندگان
چکیده
منابع مشابه
Bounds for CDFs of Order Statistics Arising from INID Random Variables
In recent decades, studying order statistics arising from independent and not necessary identically distributed (INID) random variables has been a main concern for researchers. A cumulative distribution function (CDF) of these random variables (Fi:n) is a complex manipulating, long time consuming and a software-intensive tool that takes more and more times. Therefore, obtaining approximations a...
متن کاملExchangeable random variables
If Equation (1) be satisfied, then all sets S are equally likely under the null hypothesis. To obtain a permutation test that is both unbiased and most powerful, one need only select the set S so that its probability under the alternative >0 is a maximum. This is accomplished in most cases by rejecting the hypothesis for all values of the test statistic that lie in the upper tail of the permuta...
متن کاملOrder Statistics from Independent Exponential Random Variables and the Sum of the Top Order Statistics
Let X(i) < • • • < X(^) be the order statistics from n independent nonidentically distributed exponential random variables. We investigate the dependence structure of these order statistics, and provide a distributional identity that facilitates their simulation and the study of their moment properties. Next, we consider the partial sum Ti — Yl^=i^i ^{j)'> 0 < i < n — 1. We obtain an explicit e...
متن کاملRepresentation theorems for partially exchangeable random variables
We provide representation theorems for both finite and countable sequences of finite-valued random variables that are considered to be partially exchangeable. In their most general form, our results are presented in terms of sets of desirable gambles, a very general framework for modelling uncertainty. Its key advantages are that it allows for imprecision, is more expressive than almost every o...
متن کاملThe Distribution of Partially Exchangeable Random Variables
In this article, we derive the distribution of partially exchangeable binary random variables, generalizing the distribution of exchangeable binary random variables and hence the binomial distribution. The distribution can also be viewed as a mixture of Markov chains. We introduce rectangular complete monotonicity and show that partial exchangebility can be characterized by rectangular complete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2011
ISSN: 0377-0427
DOI: 10.1016/j.cam.2010.04.030